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Triangular Dynamics Under Pressure 
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Three planar classical particles interact via a potential proportional to the area 
of the triangle they form. This system is equivalent to two oscillators attached 
to the origin, the nearest being repelled by and the other being attracted to it 
(piecewise integrable Hamiltonian). Numerical simulations show two types of 
trajectories: those apparently escaping to infinity, and those in confined quasi- 
periodic orbits. Adiabatic theories lead to discrete recurrence relations and allow 
for the second type only. A general method allowing prediction of first return 
time of the slow motion as well as a short/long-period relation is presented. The 
issue of the possibly metastable nature of escaping trajectories is raised. 

KEY WORDS:  Pressure ensembles; homogeneous potentials; piecewise 
integrable Hamiltonians; adiabatic limit; nonlinear discrete dynamics; non- 
ergodicity; metastability. 

1. INTRODUCTION 

We consider  the following "area"  model:  three p lanar  classical particles of 
identical mass are governed by the potent ia l  V(x l ,  x,_, x 3 ) =  P IK(Xl, x2, x3)[, 
where IK[ is the area of the tr iangle spanned by the particles and P is the 
"pressure." Our  interest initially s temmed from previous studies of pressure 
ensembles in statistical mechanics~l~: in this approach,  confinement of 
the n-body  system should result from an energetic cost associated with 
dilute configurat ions (such that  IKI or  IOKI ..... is large), ra ther  than being 
enclosed in a conta iner  A as in canonical  ensembles. 

The cor responding  Oartition function diverges logari thmical ly,  due to 
"stretched" configurat ions existing at an arbi t rar i ly  low energetic cost: 
the admissible  phase space is unbounded  for any positive energy. In this 
sense, our  model  shares c o m m o n  features with other  "weakly diverging" 

Dedicated to Prof. Philippe Choquard. 
~ Institut de Math~matiques appliqu6es SSP, Universit~ de Lausanne, CH-1015 Lausanne, 
Switzerland. francois.bavaud (h imaa.unil.ch. 

645 

0022-4715/94/0700-0645507.00/0 ~, 1994 Plenum Publishing Corporation 



646 Bavaud 

systems: Carnegie and Percival (2) have investigated the behavior of two 
one-dimensional particles interacting through some quartic potentials. 
Simon (3) addressed the issue of whether the quantum analogs of classically 
"weakly diverging" systems possess a discrete spectrum. The quantum 
analog of the area model appears to have been investigated by R. Feynman 
(unpublished) as a "toy model" for quark confinement (Prof. Barry Simon, 
private communication). 

Another salient feature of our model is its equivalence with a system 
of two bidimensional harmonic oscillators, the closest particle being 
repelled by the origin while the farthest is attracted to it. After some time 
the distances will coincide ("collision") and the role of the two particles are 
exchanged: thus, the model also belongs to the class of piecewise integrable 
Hamiltonian systems, among which billiards (see, e.g., ref. 4 and references 
therein) constitute the best-known example. 

2. EQUIVALENCE WITH A SYSTEM OF 
TWO HARMONIC OSCILLATORS 

Let x;~ denote the coordinate of particle i ( i=  1, 2, 3) in direction 
(a = 1, 2). The area spanned by vertices xl ,  x2, x3 is 

IKI = ~ Ide t (x l -  x3, X 2 -  X3)I 
1 

= ~ I(Xll - -  X31 ) ( X 2 2  - -  X 3 2 )  - -  (X12  - -  X 3 2 ) ( X 2 1  - -  .X31 )l 

Consider the coordinates (zt, wl, g~, z2, w2, g2) related to the previous 
ones by means of the unitary transformation 
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(Incidentally, similar transformations occur in the topic referred to as 
"statistical analysis of shape. "tS~) The area spanned by vertices x , ,  x2, x3 is 

I:~+ 2 2_w~l IK[ =--~- z 2 - w  , (2) 

Kinetic energy transforms as 

3 2 rn . ,  m . ,  
- xT~ ( ~  + ~ + w; + . . . .  ~ )  2 Z E = 2  w~+g;+ 

i=l  ~=1 
(3) 

Choosing a reference frame where the gravity center is at rest, defining 
(-, if__) [resp. (w, ft,.)] as the polar coordinates for (zl, z2) [resp. ("h, w2)], 
and taking individual rotational invariance into account, we obtain for the 
energy of the system 

x 2 m , B. 2 m .2 B~. 
E = ~  rz -w21 +~- :~- + 2--~z2 + ~-w + 2m-----~2 (4) 

~" mw2~,,, are the conserved angular momenta, where B. := mz-(~: and B,, := 
and K = ix /~/2)P.  

As announced, system (4) describes two bidimensional harmonic 
oscillators of same mass rn, the particle farthest to the origin being attracted 
to it with coupling constant x, while the particle closest to the origin is 
repelled by it with coupling constant - x .  After some time the distances z 
and w will coincide ("collision") and the roles of the two particles are 
exchanged. 

Suppose particles collide at time t = 0 :  z(O)=w(O)=Ro>O, with 
-(0) > a,(0): the z particle then undergoes harmonic motion, 

2z(O) i(o) 
_72(I) = Z2(0)  COS 2 60l + COS COt sin COt 

CO 

+ [~2(0) + m2"-~';(0) ] sin 2 COt B. 2 
CO2 (5) L 

whereas the w particle undergoes hyperbolic motion: 

W2(t)  = w2(O) cosh 2 cot + 2w(0) if(0) cosh cot sinh cot 
CO 

I B 2 ] sinh 2 mt 
+ ~2(0) -t " (6) 

m:-~(O) co: 
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Fig. 1. The b-trajectory (t~ [0, t3] ). 

time 

with o92= KIm. In the sequel, z(t) and w(t) will denote distances to the 
origin of respectively the "harmonic" particle and the "hyperbolic" one 

k [Tk is the time between the [z(t) >t w(t)]. Collision times are tk = ~ j=  trk 
( k - 1 ) t h  and kth collisions] and the collision distances satisfy Rk := 
Z(tk) = W(tk). 

Velocities and angular momenta get exchanged at collisions: 2, := 
2 ( t f ) = , i , ( t f ) ,  B . ( t f ) = B , . ( t f  ), ,~,k:=,~'(tf)=-2(tf),  B, , . ( t~)=B:( t f  ). 
Figure 1 shows the three first collisions undergone by a typical trajectory, 
and Fig. 2 depicts the corresponding phase space portrait: those colli- 

z(t),w(t) 

z' (t),w' (t) 

Fig. 2. Phase portrait for the b-trajectory (t ~ [0, t3]). 
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sions [corresponding in the initial system to the vanishing of IKI = 
�89 Idet (x~-x3,  x2-x3)l ,  i.e., to orientational breaking] leave little hope of 
achieving analytical mastery. Further investigations have been carried out 
using adiabatic limits, supported by numerical simulations in combination 
with discrete recurrence relations and fixed-point convergence arguments. 

3. N U M E R I C A L  S I M U L A T I O N S  

A series of empirical simulations with various initial conditions show 
two types of trajectories: 

(a) Trajectories apparently escaping to infinity: R k ~ o o  when 
k --* oo, with rk --* 0. Figures 3-5 show, respectively, the positions z(t), w(t) 
for n = 30 collisions (all happens as if one were dealing with a single free 
particle: z and w are barely individually distinguishable at this scale), the 
collision times rk versus k (n = 400), and a Poincar6 section (-~,, zk) for the 
a-trajectory with initial conditions m = k = 1, B_ 2 = B,~. = 4, z (0)=  w(0)= 10, 
-(0) = 2, and ,i,(0)= 1. 

(b) Trajectories quasiperiodically confined near the origin; rk strongly 
increases as Rk approaches its minimum. Figures 6 (n=  100), 7, and 8 
(n = 400) correspond to Figs. 3-5 for the b-trajectory with initial conditions 
m = k = l ,  B.2=B~,.=4, z ( 0 ) = w ( 0 ) = 1 0 ,  ~(0)=2,  and r 0 ( 0 ) = - l :  both 
kinetic and potential initial energies are the same for a- and b-trajectories, 
differing only by the sign of ~i'(0). The b-trajectory is characterized by a 
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Fig. 3. The a-trajectory (re [0, t3o]). 
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Fig. 4. r(k) for the a-trajectory (k ~ [0, 400]). 
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Fig. 5. Poincar6 section for the a-trajectory (k E [0, 400]). 
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Fig. 6. The b-trajectory ( te  [0, tmo]). 
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�9 Fig. 7. r(k) for the b-trajectory [k~  I-0, 4-00]). 
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Fig. 8. Poincar6 section for the b-trajectory (k ~ [0, 400]). 

Z I 

quick motion of period of order r = 0.3 (collisions) and a slow one of period 
T~- 100 (quasiperiodic "precession"). 2 

4. A D I A B A T I C  L I M I T  ( I )  

The latter is most coveniently carried over in coordinates u :=  (l/x,/2) 
( z +  w) and v :=  ( 1 / x / ~ ) ( z -  w). The energy (4) reads 

m E = K l u v l + ~ 2 +  62+ _ + (7) m(u+v) 2 m(u--v) 2 

The symmetry u,-~v is broken by the constraint u>fv>~O reflecting 
z >~ w >/0. Collisions correspond to specular reflections on the line v = 0, 
whereas the line u = v can be shown to correspond to isoceles configura- 
tions of the original triangle. Figure 9 depicts the a-trajectory (n = 30) in 
the u-v plane. 

2Confinement of the trajectory implies ( - ( t ) > = 0  on average, as illustrated in Fig. 6. 
However, _~(t~)> 0 for (most of) the collision times, as illustrated in Fig. 8. I thank a referee 
for pointing out this difficulty. 
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Fig. 9. The a-trajectory ( re  [0, t3o]). 

"' U 
2O 

The u coordinate (overall distance to origin) describes slow motion: 
the v coordinate (relative distance) describes the rapid one, governed by 
effective energy 

m b 2 _ m  02(0+ E o ~ = K u  o r + } -  - ~ -  ._ , 

where 0 (0+)>0 ,  the velocity just after some collision we take as the 
temporal origin, is adiabatically invariant. 

By energy conservation, the period z between two collisions is ~6~ 

2~(0 + ) 2(0 + ) -  v~,(0 + ) 
r w2u(O)  o)2z(O ) (8) 

The average potential acting on u is 

2 E m -~-~<v>~= 5 o.=go'-(o +) 

(by the virial theorem): this suggest the possibility for the u coordinate to 
become asymptotically free, approaching a constant velocity ~i~. 

However, the velocity of a slow particle varies for finite distances as 

Ati ~r - : =  

m 
v( t ) dt "" - < ~cvu > ~ 

m b l  o 
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With (8) and the virial theorem again 

203(0 + ) 
AI) = 3OJ2U2(0 ) (9) 

Let uk denote the u coordinate at the kth collision, and tik its velocity. 
Together with (8) and (9), we get the system 

t ~ 
U k + l = U k "q- a ~ k  k 

(c,,+, u, b 
----gr-  > o 

where 203(0 + ) > 0 (10) 

3co 2 

or equivalently, the second-order evolution 

Uk+z=Uk+l+Uk - -  +U (11) 
U k +  I 

Recall that (11 ) holds in the adiabatic limit only, where Uk > 0 is large 
enough and the centrifugal barrier B.., B ,  negligible. In this limit, we prove 
that u-motion is always bounded, i.e., contrarily to what Figs. 1-3 suggest, 
the system always returns near the origin. In short, escaping trajectories 
would be metastable: their perceived stability might be convincing for 
(very) long but finite times, smaller than the precession time T (we have 
observed the a-trajectory during kmax = 10000 collisions without any 
noticeable qualitative change). 

Proof. Consider ek := (2b/a) In Uk + (~. Existence of an asymptoti- 
cally free u motion (u~_ = oo, fi~ >/0) makes e~ = oo. On the other hand, 

b (b_afi~k)+O(u~6) (12) e k + I = e k -t- U--~k 

Divergence of e~ entails l imk~(b--af i~)>~0 and u, growing at most as 
ck TM. Then (10) yields the contradiction fi~ = rio- b S~.=o(1/u2k) = -oo.  I 

In physical terms, ek mimics an energy whose logarithmic potential 
(2b/a) In uk insensitively but inexorably imprisons the particle u~. 

5. ADIABATIC LIMIT (11) 

Comparison with simulations shows approximations (8) and (9) to 
hold well; what is more worrying is the drift of 0(t~-) (Fig. I0, a-trajectory) 
due to nonconstancy of u between collisions. Let v(0+)= 0, 6(0+)> 0, be 
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v '  (0+) 
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0 .  

0 . 8  

300 400 

Fig. 10. Relative velocity after collisions (a-trajectory). 

collision 

given. The particle is then reflected at time s such that  O(s)= [S~o dt/~(t)] + 
2 s O (0+)=0 ,  i.e., such that  0 (0+)=~o  ~odtu(t). Then the particle returns 

to the origin at time s+s'  such that  v(s+s')=O. Its velocity just before 
collision is 

O((s+s')-)= dtiJ(s+t) +O(s)=-w"  dtu(s+t) 

Then 

AO := O(t + ) - -  O(0+) = 09 2 d t u ( s + t ) -  dtu(t) 

Taking  u(t) ".- u(O) + tO(O), and s = s' "-- z/2, one finally gets 

~(o) o2(o + ) 
dO ogZu2(O) (13) 

System (10) should then be replaced by 

�9 2tik Ok 
/ ' /k  + I ~ U k  "t- - -  

( . 0 2 U k  

2 ~  
ld k + l = l~l k 2 

3aJ u~ 

bk + l = vk + ~2u----~k 

o r  

Uk + I = Uk  "Jt- LIk T k  

(,0 4 

tJk+ 1 = t~k - - - -  Uk'C 3 
12 

z~ktk 2 
zk + 1 = Z'k 2 u  k 

(14) 
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Only first-order terms have been retained: the adiabatic approximat ion  is 
valid for Uk ~> rk~k, Uk >> rki~k. Defining ct k := ~k/Uk, one gets with the same 
approximat ion  

/'/k + I :Uk"[-UkO~k'['k 

(.,4 ) 
= ~ k  - -- z~ + ~-~k 

OCk+l 12 " 

1 

(xs) 

Collision times turn out to satisfy a second-order  au tonomous  recurrence 
relation: 

f f \ \,fl'ck+ll+cz~.] or ~ q k + i = f ( q ~ > + c r ~  (16, 
r k + 2 = r x + i \  \ ~--~- / / L r k + l = q k Z k  

where qk := "tk + l/rk, C = 094/24, and f ( x )  := 1 + x -- 3x 2 + 2x 3. 
Before discussing the system (16), recall that  Zk is decreasing iff uk is 

increasing. 
Suppose c = 0 .  Figure 11 then shows the evolution qk+~ = f ( q k )  with 

initial condition q o > 0  to converge to q ~ =  1 [the fixed point 1 = f ( 1 )  is 
stable to the left] iff 1/2 < q o <  1: this corresponds to indefinitely escaping 
trajectories. For  0 ~< q0 <~ 1/2 or qo >/1, q~. = m:  corresponding trajectories 
are the reflected ones. 

1.5 

i 

0.5 

f(x) 

2 

0 x 
0.25 0.5 0,75 1 1.25 1.5 

Fig. . l l .  Left stability of 1 = f ( l ) .  
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For c > 0, it is convenient to introduce ek := 1 --qk, which we take as 
a small, positive quantity (Uk increasing). From (16) 

k 

e k + ,  = 1 - f ( 1  - e k ) - c z  g I-I (1 __~j)4 
i = 0  

~- ek -- 3e~ -- Cr~ exp ej (17) 

Set E(k) ' .=Zj=o e1 a n d k  C : =  czg. In the continuum limit, (17) amounts to 

E " ( k ) ~ - - 3 [ E ' ( k ) ] 2 - C e x p [ - 4 E ( k ) ]  with E(0) = 0 and E'(0) = So 

(18) 

E(k) is increasing as long as ek>~O. AS soon as Sk~<0, the trajectory is 
reflected. Define x(k) :=exp[3E(k)] .  Then x"(k)= -3C/xl /3(k)  describes 
the motion of a particle of unit mass in potential V(x) = (9/2) Cx 2/3 with 
initial conditions x(0)= 1, x ' (0)= 3eo. The particle gets reflected at colli- 
sion kl satisfying x'(kl)  = 0, i.e., 

1 e { ~ / c +  11 ,- dx 
kt = ~ I ~1 (e  0 "~- C - -  C x 2 / 3 )  l/z 

1 [ ( e o + C  ) {;_arctan__~oC}+so x / ~ ]  (19) -- 2C3/2 

Define so(k) as the number of collisions (measured from the start of simula- 
tion) occurring between collision k and the u reflection towards the origin. 
By construction, So(0)=: k0 is the duration of increasing Uk behavior and 
so(k) should logically be of the form so(k):= k o - k  for k ~< ko, periodically 
extended as so(k)= T - ( ( k - k o ) m o d  T), where T is the precession period. 
On the other hand, formula (19) worked out in terms of (Zk, Zk +1) instead 
of (to, rj) yields 

1-24 ~ r x/~ -]1-~ 

12(rk--Zk+l) + 
O)4-t -5 

arctan c~ ] 
2 

(20) 

Note l im,o~oS' j (k)=~:  this matches the stability of the fixed point 
q~ = ! - for c = 0. Moreover, 

lim sdk )  = 0 and lim sl(k) = -2_-7- 
{rk+l ~ r ~ )  (rh+l ~ r~ + ) a )  ~'min 
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Figure 12 shows the graph of s l (k)  obtained from simulated values 
(rk, Zk+,) of the b-trajectory compared to the graph of so(k) where T'-- 
102 = period of u motion, ko ~-k,-~ 26 (Uko= Umax): the agreement of so(k) 
and Sl(k) is pretty good except in a neighborhood of k : = k o +  T/2 ~ - 77, 
where the particle is too close to the origin (u~= umi,) for the adiabatic 
approximation to remain valid. Although (20) was derived under the 
hypothesis of increasing Uk, it obviously holds well in decreasing conditions 
also (time reversibility): given any two consecutive short periods, formula 
(20) correctly estimates the waiting time till the next  u reflection, provided 
measurement is performed not too close to the origin. 

Moreover, estimating the discontinuity of so(k) at k = ko by the corre- 
sponding jump of s , (k )  yields the following relationship between short 
(collisions) and long (precession) periods: 

T 7t x//'6 
2 2 (21) 

(0 Tmi n 

Figure 7 yields Zmi, = rk0 = 0.269, whereas formula (21) with T =  102 yields 
~mi, = Tk0 = 0.275. Observation of other trajectories confirms the genericity 
of the relation. 

Also, although taking into account Aft constitutes an improvement 
over description of Au and Aft only, qualitative predictions are quite similar 
in both models: In particular, the analog of (16) can be derived from (10), 
yielding q,~+l=f(qk)-'l-~"r 4, where f ( x ) = l - x 2 + x  3 and ?=a94/12; u 
reflection then reduces to x reflection [x := exp 2E(k)] in potential ~'(x) = 
2~ In x: so it is not unreasonable to image our method of predicting return 
time as well as short/long-period relation of type (21) to be of some 
generality. 

s(k) 

i00 

8O 
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4O 

2 o ~  

Fig. 12. 
i00 200 300 "400collision 

Theoretical versus empirical lifetime of escaping behavior. 
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6. C O N C L U S I O N S  

One thing is certain: our model is not ergodic; for if it were, the 
proportion of time spent around u (integrating over v, ~, ~ at fixed energy: 
microcanonical measure) would go as u - ' .  Nonnormalizability of the latter 
(i.e., logarithmic divergence of the partition function) ruins ergodicity; this 
is compatible with both the following mutually exclusive and exhaustive 
statements: 

�9 A: The a-trajectory and related ones vanish at infinity: z and w 
particles become bound to each other by an infinite force and can no 
longer be individually discerned [ r~  = 0, (Vmax)~, = 0]: to this confinement 
corresponds an increasingly stretched (obtuse) triangle in the original 
(x,, x2,xs) coordinates. The large side (diameter) moves with velocity 

x / ~ ,  while the corresponding height oscillates at frequency co,,= 
2g/r ~ oo. Divergence of partition function supports this picture. ~'~ 

�9 B: The a-trajectory and related ones are always reflected due to 
nonergodic confinement mechanisms. Triangular dynamics consists of 
quasiperiodic precession of its diameter between Dmi n and D . . . .  modulated 
by rapid orientationai inversions: here, a-type triangles do not evaporate, 
even if their very persistent tendency to dilution can be qualified as 
metastable. 

Another reliable fact is the inability of adiabatic theories to take into 
account behavior A, if existing. As the latter stems from averaging rapid 
processes, and so stands, so to speak, halfway between mechanics and 
statistical mechanics, one is tempted to put more credit in adiabatic theory 
than statistical mechanics when their descriptions are conflicting. That is, 
rejection of A from adiabatic arguments appears stronger than its accep- 
tance on a statistical mechanical basis. 

The a-trajectory, if confined, presumably obeys relation (20), yielding 
s,(0)-~ 9500 as initial estimate of escaping behavior duration. At 10,000 
collisions later, the estimate has grown to s,(10,000) -~ 33,000: this does not 
contradict the qualitative behavior of s,(k) depicted in Fig. 12 provided 
observations take place "just after" maximal proximity to the origin. In this 
regime, s~(k)< so(k ) and so T would be at least 66,000. 

The original system (4) or (7) contains four degrees of freedom with 
one integral of motion (the energy). Adiabatic limits I and II contain, 
respectively, two and three degrees of freedom without obvious conserved 
quantity: dimensionally speaking, theory II then might (or might not) 
capture the true nature of the motion. Of course, nothing forbids in theory 
the existence of another integral of motion for the original system, a 
suspicion partially supported by the contrast between a- and b-behavior 
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despite the identity in energy. However, nonergodicity is far from implying 
integrability, as illustrated by KAM theorem. 

Finally, the quantum analog of the area model has pure discrete 
spectrum, as noted by Simon, t31 as a consequence of the Fefferman-Phong 
theorem. Also, the quantum partition function is finite. So behavior A, if 
existing, possesses no quantum analog. 
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